References H


Haag E.H., Sly B.J. & Raff R.A.. (1999) Apextrin, a novel extracellular protein involved in adaptive evolution of larval ectoderm in the direct-developing sea urchin Heliocidaris ery­throgramma. Dev. Biol. 211:77-87.

HAGSTRÖM B.E. & LÖNNIG S. (1967) Experimental studies of Strongylocentrotus droebachiensis and S. pallidus. Sarsia, 29, p.165-176.

HALL T.J., GRULA J.W., DAVIDSON E.H. & BRITTEN R.J. (1980) Evolution of sea urchin non-repetitive DNA. Journ. Mol. Evol., 16, p.95-110.

Hamann 0. (1887) Beiträge zur Histologie der Echinodermen. Jenaische Zeit. Naturwiss. 21: 87-266.

HAMMER H.S. & WATTS S.A. (1999) A preliminary determination of three digestive enzymes in the sea urchin Lytechinus variegatus. Ala. Acad. Sci., 70 (résumé).

HARDIN J. (1989) Local shifts in position and polarized motility drive cell rearrangement during sea urchin gastrulation. Dev. Biol. 136:430-445.

HANSEN H.J. (1902) Echinocheres globosus, n. gen., n. sp., a Copepod parasitic in spines of an Echinothurid. Videnskabelige Meddelelser fra den Naturhistoriske Forening i Kjobenhavn, ser.6, 4, p.437-449.

HARDIN J. & CHENG L.Y. (1986) The mecha­nisms and mechanics of archenteron elongation during sea urchin gastrulation. Dev. Biol. 115:490-501.

HARDIN J. & McCLAY D.R. (1990) Target rec­ognition by the archenteron during sea urchin gas­trulation. Dev. Biol. 142:86-102.

HART M.W. & STRATHMANN R.R. (1994) Functional consequencies of phenotypic plasticity in echinoid larvae. Biological Bull. (Woods Hole), 186, 291-299.

HART M.W. (1995) What are the costs of small egg size for a marine invertebrate with feeding planktonic larvae ? American Naturalist, 146, p.415-426.

HART M.W. (1996) Evolutionary loss of larval feeding : development, form, and function in a facultatively feeding larva, Brisaster latifrons. Evolution, 50, p.174-187.

Hayasaka I. (1948) Notes on the Echinoids of Taiwan. Bull. Oceanogr. Inst. Taiwan 4: 1-36.

HARVEY E.B. (1956) The american Arbacia and other sea urchins. Princeton University Press, Princeton, N.J.

HENRY J.J. & RAFF R.A. (1990) Evolutionary changes in the mechanisms of dorso ventral fate de­termination in the direct developing sea urchin Heliocidaris erythrogramma. Dev. Biol. 141:55-69.

Henry J.J., Wray G.A. & Raff R.A.. (1991) Mechanism of an alternate type of echinoderm blastula formation: the wrinkled blastula of the sea urchin Heliocidaris erythrogramma. Dev. Growth Differ. 33:317-328.

HERRERA J.C., McWEENEY S.K. & McEDWARD L.R. (1996) Diversity of energetic strategies among echinoid larvae and the transition from feeding to non feeding development. Oceanologica Acta, 19, p.313.-321.

Hidaka M. & Takahashi K. (1983) Fine structure and mechanical properties of the catch apparatus of the sea-urchin spine, a collagenous connective tissue with muscle-like holding capacity. J. Exp. Biol. 103 : 1-14.

HIGGINS R.C. (1974) Specific status of Echinocardium cordatum, E. australe and E. zealandicum (Echinoidea: Spatangoida) around New Zealand, with comments on the relation of morphological variation to environment. Journal of Zoology, 173 (4). 451-475.

HIGHSMITH R.C. (1982) Induced settlement and metamorphosis of sand dollar (Dendraster excentricus) larvae in predator-free sites : adult sand dollar beds. Ecology, 63, p.329.337.

HIGHSMITH R.C. (1985) Floating and algal rafting as potential dispersal mechanisms in grooding marine invertebrates. Marine Ecology Progress Series, 25, p.169-176

HIMMELMAN J. H. (1986) Population biology of green sea-urchins on rocky barrens. Mar. Ecol. Prog. Ser. 33:295-306.

Hirohashi N. & Vacquier V.D. (2002) Egg fucose sulfate polymer, sialoglycan, and speract all trigger the sea urchin sperm acrosome reaction. Biochem. Biophys. Ffes. Commun. 296, 833-839.

Hirohashi N. & Vacquier V.D.(2002) High molecular mass egg fucose sulfate polymer is required for opening both Ca2+ channels involved in triggering the sea urchin sperm acrosome reaction, J. Biol. Chem. 277 : 1182-1189.

Hirohashi N.& Vacquier V.D.(2002) Egg sialoglycans increase intracellular pH and potentiate the acrosome reaction of sea urchin sperm, J. Biol. Chem. 277 8041-8047.

HIROHASHI N. & VACQUIER D. (2003) Store-operated calcium channels trigger exocytosis of the sea urchin sperm acrosomal vesicle. Biochem. & Biophys. Res. Communications 304 (2003) 285-292. Ж

Hinegardner R.T. (1969) Growth and development of the laboratory cultured sea urchin. Biol. Bull., 137:465-475.

Hoegh-Guldberg 0. & EmLet R.B. (1997) Energy use during the development of a lecithotrophic and a planktonic echinoid. Biol. Bull. 192:27-40.

HOLLERTZ K., SKÖLD M. & ROSENBERG R. (1998) Interactions between two deposit feeding echinoderms; the heart-urchin Brissopsis lyrifera (Forbes) and the brittle-star Amphiura chiajei (Forbes). Hydrobiologia 375/376, p.287-295.

HOOD S. & MOOI R. (1998) Phylogenetics and taxonomy of Brisaster, a genus of deep water schizasterid spatangoids. P. 681-686 In: R. Mooi & M. Telford (eds), "Echinoderms: San Francisco. Proceedings of the 9th International Echinoderm Conference", Balkema, Rotterdam. 923 p.

HOOPER R.G., CUTHBERT F.M. & McKEEVER T. (1997) Feasibility trials for sea urchin aquaculture using natural feeds. Bulletin of the Aquaculture Association of Canada, 97, (1), p.5-7.

HORSTADIUS S. (1936) Weitere Studien liber die De­termination im Verlaufe der Eiachse bei Seeigeln. Wilh. Roux Archiv. 135:40-68.

Hughes J,, Ward C.J., Aspinwall R., Butler R. & Harris P.C. (1999) Identification of a human homologue of the sea urchin receptor for egg jelly: a polycystic kidney disease-like protein. Hum. Mol. General S, 543-549.

Hunter I.G. (1977) Sediment production by Diadema antillarum on a Barbados fringing reef. Proceedings Third International Coral Reef Symposium 2, 105-109.

Hyman L. H. (1955) The Invertebrates: Echinodermata. McGraw-Hill, New York. 763 pp. Johansen, K., & R. L. Vadas. (1967. Oxygen uptake and responses to respiratory stress in sea urchins. Biol. Bull. 132: 16-22.